
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

1 Daniel Llamocca

Using Interrupts

OBJECTIVES
▪ Implement an embedded project (PS + PL) where a hardware component inside the PL can generate an interrupt to the

processor (Vivado 2019.1).
▪ Learn to develop software routines to handle PL interrupts.

PL INTERRUPTS - DOCUMENTATION

▪ UG585: Zynq-7000 AP SoC Technical Reference Manual – Chapter 7.
▪ XPLANATION: FPGA 101, “How to Use Interrupts on the Zynq SoC”, Xcell Journal, Second Quarter 2014.

PL INTERRUPT TEST

▪ Test Project: AXI-4 Full Pixel Processor peripheral with interrupt signal. This peripheral (from Unit 7) was modified by
including an interrupt signal 𝑜𝑖𝑛𝑡 and by updating the FSM@ S_AXI_ACLK.

▪ A PL interrupt is forced by writing onto a specific register in the AXI4-Full Peripheral. This is not a software interrupt. The
process goes as follows:
✓ Write a specific word (0x99AA55EE) on address 1101 on the AXI4-Full

Pixel processor peripheral. This will assert the interrupt signal 𝑜𝑖𝑛𝑡.
✓ Let the software routine wait until the PS detects the interrupt signal.
✓ When the interrupt signal is detected, the ISR de-asserts the interrupt

signal (and prints a message) by reading a word from address 1101.

CUSTOM AXI4-FULL PERIPHERAL: PIXEL PROCESSOR WITH INTERRUPT OUTPUT

CONSIDERATIONS

▪ We will use the Pixel Processor with NC=4, NI=NO=8.

▪ AXI4-Full Peripheral: Custom FIFO-based interface that includes a user-generated output signal oint. All writes/reads to any

of the 16-word memory positions are treated equally (writing/reading on the FIFO). The exception is the write/read at
register 13, which is used to assert/de-assert the interrupt signal.

▪ List of files to use:
✓ mypixfullintr_v1_0.vhd: AXI4-Full Peripheral (top file) with interrupt output.

✓ mypixfullintr_v1_0_S00_AXI.vhd: AXI4-Full Interface description.

✓ myAXI_IP.vhd, my_AXI_fifo.vhd, my_gen_pulse_sclr.vhd: Ancillary files for the AXI4-Full Peripheral.

✓ pixfull_rp.vhd: wrapper file for the Pixel Processor IP. Here, we can modify the parameter F (1..5).

✓ pixfull_fifointf.vhd: top file for the Pixel Processor IP.

✓ LUT_group.vhd, LUT_NItoNO.vhd, LUTNIto1.vhd, pack_xtras.vhd.

✓ LUT_values8to8.txt: LUT values.

▪ AXI4-Full Pixel Processor Peripheral (we make S_AXI_CLK=CLK_FX) with interrupt output 𝑜𝑖𝑛𝑡: In Figure 1, see the circuit

that generates oint. To assert and de-assert this interrupt signal, we need to write and read to/from address 1101. Writing

on address 1101 still writes data on the iFIFO, and the reading retrieves resulting data from oFIFO.

IP GENERATION
▪ Create a new Vivado project: pixfull_dr_intr_sys

✓ Make sure the default language is VHDL, so that the system wrapper and template files are created in VHDL.

✓ At Default Part, go to Boards, and select the Zybo (or Zybo Z7-10) board.

▪ From the menu bar, select Tools → Create and Package IP. A new Vivado project will open.

✓ Create a new AXI4 Peripheral. Name: mypixfullintr. Location: /ip_repo.

Peripheral Repositories tip: To add a previously-generated IP into a new project, go to: Project Settings → IP → IP

repositories and point to the associated repository folder.

✓ Add Interface: Full, 32 bits. Interface Mode: Slave. Memory Size: 64 bytes.
✓ Select Edit IP. A New project appears: look for <peripheral name>.vhd and <peripheral name>_S00_AXI.vhd files (in

this case it will be mypixfullintr_v1_0.vhd mypixfullintr_v1_0_S00_AXI.vhd). Modify the project:

 Replace these two files with our edited files mypixfullintr_v1_0_S00_AXI.vhd and mypixfullintr_v1_0.vhd. This

is necessary as our peripheral includes an output oint.

 Add the extra files to the folder /hdl in /ip_repo/mypixfullintr_1.0 and add these source files (including the .txt

file) to the Vivado project. *Vivado 2019.1: by default, the files will also be added to the folder /src.

✓ There is no need to add external ports as our peripheral does not include external I/Os.
✓ Synthesize (just to double-check everything is ok): You should’ve simulated the code in a different project.

oint

0x99AA55EE written
on address 1101

a word is read
from address 1101

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

2 Daniel Llamocca

✓ Go to Package IP - mypixfullintr: Identify areas that need refresh:

 Important: When replacing the top file (mypixfullintr_v1_0.vhd), we must make sure that Vivado detects the

inclusion of the interrupt output signal (it is not enough to just replace the file in the folder, so you can just add an

extra space in the file and save it). Then, you should see that in Package IP, you also need to click on Merge Changes

for Ports and Interfaces. This will enable Vivado to add the extra interrupt port.

 Click on Merge changes from File Group Wizard.

✓ Go to Review and Package → Re-Package IP.

▪ Your custom IP with interrupt output is now ready to be used as an AXI4-Full Peripheral
▪ You will return to the original Vivado Project.

CREATING A BLOCK DESIGN PROJECT IN VIVADO
▪ Click on Create Block Design and instantiate the Zynq PS and the AXI MYPIXFULLINTR peripheral.

▪ Click on Run Block Automation and Run Connection Automation.

▪ There is no need to add an .xdc file as our peripheral does not use external ports.

▪ Connect to interrupt signal (oint) to the PS:

✓ Go to PS → Interrupts. Check Fabric interrupts. Expand PL-PS Interrupt Ports. Then, check IRQ_F2P[15..0] (see Figure

2). This enables the 16 PL interrupts.

✓ Connect the oint signal (see Figure 3). By default, if it is only one bit, it will connect to IRQ_F2P[0..0]. This is the

interrupt IRQ ID #61. This has to be properly set up in the software routine as ‘XPS_FPGA0_INT_ID’.

✓ If we have more than one interrupt signal, we must use the concat IP.

▪ Click on Validate Design to ensure the interrupt connection is correct.

▪ Create the VHDL wrapper (Sources Window → right click on the top-level system design → Create HDL Wrapper)

▪ Synthesize, implement, and generate the bitstream.

a b D E

1 0 1 1
0 1 0 1

1 1 1 1
0 0 X 0

0

1 iwren1

S1

oempty

ifull

mem_wren

orden1

S2

10

01

0

1

0

oempty

FSM at S_AXI_ACLK

S_AXI_ARESETN=0 (C0)

C=15
CC+1

fifo_fsm_rst 1

no

yes

rstAXI_ARESETN

fifo_fsm_rst

mem_rden

1

0
axi_rvalid

C0

oint

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

axi_arv_arr_flag

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

mem_rden

a
x
i_

rv
a
lid

iFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

LUT
8-to-8

LUT
8-to-8

LUT
8-to-8

upix_ip

LUT
8-to-8

oFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK

CLKFX

oempty

orden

iempty

ifull

mem_wren

S_AXI_ARESETN

axi_ar_addr (5..2)=1101

axi_aw_addr (5..2)=1101

S_AXI_WDATA = 0x99AA55EE

E

D

oint

axi_aw_addr

S_AXI_WDATA

axi_ar_addr

a

b

Figure 1. AXI4-Full Pixel Processor Peripheral with interrupt output (oint)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

3 Daniel Llamocca

✓ An error will be reported at Synthesis. Vivado only copies VHDL files from the IP folder to the embedded project folder
(located inside the /<peripheral name>.srcs/…/ipshared folder). As a result, the LUT_NItoNO.vhd file cannot find

the LUT_values8to8.txt. We need to place this text file in the same folder as the LUT_NItoNO.vhd file.

✓ This folder location is available by opening the LUT_NItoNO.vhd file. You can find this file in the design structure or via

the Vivado error which will point to the LUT_NItoNO.vhd file. After copying the .txt file, you can Synthesize again.

✓ In general, this procedure is to be followed for any ancillary file (e.g. text file) used by the VHDL files.
▪ Export hardware (with bitstream) and launch SDK.

Figure 2. PS Customization. 16 PL Interrupt signals enabled

Figure 3. Connecting the oint interrupt signal to the PS (signal IRQ_F2P[0..0] with IRQ ID #61)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

4 Daniel Llamocca

TESTING WITH SDK

▪ See Tutorial Unit 2 for details on how to create and test a software application on SDK.

▪ Create a new SDK application: pixtest_intr. Then, copy the following file into the /src folder: pix_plintr.c

▪ The software routine will write and read 32-bits word to/from the AXI-4 Full peripheral (Pixel Processor with interrupt output)
and will verify the assertion, detection, and de-assertion of a PL interrupt.

▪ Each PL interrupt has its associated Interrupt Service Routine (ISR). We specify this inside the following function:

SetupInterruptSystem (XScuGic *GicPtr)

✓ We connect the ISR to the Generic Interrupt Controller (via XScuGic_Connect) by assigning the IRQ ID #61

(XPS_FPGA0_INT_ID).

✓ We specify a user-defined function to be executed inside the ISR. This is done by specifying the function
DeviceDriverHandler in XScuGic_connect.

✓ In the DeviceDriverHandler function, we can specify the instructions we want to be executed once an interrupt hits.

In this example, this function reads a word from address 1101 and prints the retrieved data.

▪ Once the program is compiled, connect the ZYBO (or ZYBO Z7-10) Board to the USB port of your computer.
▪ Download the bitstream on the PL: Xilinx Tools → Program FPGA

▪ Go to the SDK Terminal and connect to the proper COM port.

▪ Select the project you created. Right-click and select Run As → Launch on Hardware (GDB).

▪ Testing strategy:

✓ The software routine writes the following 4 words and retrieve the following words from the peripheral (Pixel Processor
with parameter F=1):

Input Output

0xDEADBEEF 0xEED2DDF7

0xDEAFBEAD 0xEED4DDD2

0xFADEDEAD 0xFDEEEED2

0xFACEB00C 0xFDE6D437

✓ The software routine then writes the word 0x99AA55EE on address 1101. This will assert the interrupt. The routine

waits until the interrupt is asserted.
✓ Then, the ISR is executed: a message is printed (‘PL Interrupt occurred’), and a word is read from address 1101.

The word read should be 0xC6D194F7 (Pixel Processor with F=1).

✓ To double-check that the assertion and de-assertion of the interrupt does not affect the correct operation of our circuit,
we write again the words in the table above. We are supposed the retrieve the same output.

✓ At this moment, we have successfully tested the interrupt.

▪ Note: Do not assert the interrupt and then de-assert it immediately. The PS needs to detect the interrupt first, otherwise the

ISR is never activated and the software routine will remain forever waiting for the PL interrupt.

NOTE
▪ There is another file pix_dma_plintr.c that tests both the DMA (with interrupts) and the PL interrupts. It essentially merges

the application from Tutorial # 8 (DMA with interrupts) and the software application in this Tutorial # 9 (PL interrupts). Feel
free to test this code by creating a new SDK application.

